GPAT

- ➤ Graphical Policy Analysis Tool (GPAT)
- ➤ Implemented in Visual Basic for Applications (VBA) as an Add-in to Excel
- ➤ Analyzes and Compares Excel output from multiple RiverWare runs (policies, hydrologic scenarios, etc.)
- Graphs slots, statistics, percentile, probability distributions and exceedance probabilities
- > Allows dynamic data exploration

How to Compare Policies???

2

One run, Alt. policies

➤ I want to compare individual slot values over time for a common hydrology

Statistic(runs), Alt. policies

- ➤ I want to compare the statistics of all hydrologic scenarios over time
 - Mean, Minimum, Maximum, Standard Deviation

Distribution(runs), Alt. policies

➤ How do the probabilistic distributions of slot values compare at one point in time? PDF (Histogram), CDF

Percentiles(runs), Alt. policies

What will the slot values be over time that correspond to a particular percentile of occurrence?

Exceedance Probability

- What is the probability of a slot variable exceeding or not exceeding a certain value through time?
- What is the probability of a slot variable falling within a specified range through time?
- ➤ What is the probability of a binary occurrence?
 - Flood release, shortage, surplus, equalization flags

Recent GPAT Development

- > GUI reorganized into tabbed interface
- ➤ Flexible specification of samples across columns, worksheets, and workbooks
- > Time range specification
- Graph format options for vertical gridlines and data markers
- Choice of six methods for calculating percentiles

9

Options for

Including

Vertical

Gridlines &

Data

Markers

Six Methods for Calculating Percentiles

10

March 7, 2006 RiverWare User's Group

Percentile Methods

- ➤ Particularly with small sample sizes, the methods can yield very different results
- ➤ Suppose we have 4 observations with values of: 1, 2, 3, and 4. The percentiles (p) associated with the values are shown in the following table

Observation	Least	Greatest	Split	CRC	Excel	Range
1	0	25	12.5	20	0	0 = p = 25
2	25	50	37.5	40	33.3	25
3	50	75	62.5	60	66.7	50
4	75	100	87.5	80	100	75

Upcoming GPAT Development*

- ➤ New analysis for probability of event occurrence among time series
 - Find the number of times a shortage is declared in each run
 - Calculate statistics and plot distribution of the numbers of shortages across the runs

* Funded by Lower Colorado Region of USBR

Upcoming GPAT Development*

- Compound event definition
 - Define an event with required conditions across a number of different slots
 - Lake Mead elevation < 1075 and Lake Powell elevation > 3526 and Lake Powell elevation < 3575

* Funded by Lower Colorado Region of USBR

Upcoming GPAT Development*

- Graph format options for pre-selecting plot area color, line formats, and data marker formats
- Placeholder in results for an initial timestep value so a value can be easily entered and displayed on graphs

* Funded by Lower Colorado Region of USBR

Potential Future Development

- Change the user interface from specifying a graph "type" to specifying transformations and analyses
- Expand capabilities for sampling by time, transforming series, and analyzing events
- Non-spreadsheet GPAT to bypass row/column limitations in Excel