GPAT

$>$ Graphical Policy Analysis Tool (GPAT)
$>$ I mplemented in Visual Basic for Applications (VBA) as an Add-in to Excel
$>$ Analyzes and Compares Excel output firom multiple RiverWare runs (policies, hydrologic scenarios, etc.)
$>$ Graphs slots, statistics, percentile, probabilifity distributions and exceedance probabilities
> Allows dynamic data exploration

How to Compare Policies???

One run, Alt. policies

I want to compare individual slot values over time for a common hydrology

Statistic(runs), Alt. policies

$>$ I want to compare the statistics of all

 hydrologic scenarios over time- Mean, Minimum, Maximum, Standard Deviation

Distribution(runs), Alt. policies

$>$ How do the probabilistic distributions of slot values compare at one point in time? PDF (Histogram) , CDF

Histogram
Mead Pool Elevation (ft), 12/15

Cumulative Density Function Mead Pool Elevation (ft), 12/15

Percentiles(runs), Alt. policies

$>$ What will the slot values be over time that correspond to a particular percentile of occurrence?

Statistical Percentiles
Mead Pool Elevation (ft)

Exceedance Probabilility

$>$ What is the probability of a slot variable exceeding or not exceeding a certain value through time?
$>$ What is the probability of a slot variable fallling within a specified range through time?
$>$ What is the probability of a binary occurrence?

- Flood release, shortage, surplus, equalization flags

Recent GPAT Development

$>$ GUI reorganized into tabbed interface
> Flexible specification of samples across columns, worksheets, and workbooks
$>$ Time range specification
$>$ Graph format options for vertical griollines and data markers
$>$ Choice of six methods for calculating percentiles

DATA SETUP GRAPH SETUP UTILITIES

Options for Including Vertical Gridlines \& Data Markers

Percentile Methods

$>$ Particularly with small sample sizes, the methods can yield very different results
$>$ Suppose we have 4 observations with values of: $1,2,3$, and 4 . The percentiles (p) associated with the values are shown in the following table

Observation	Least	Greatest	Split	CRC	Excel	Range
1	0	25	12.5	20	0	$0=\rho=25$
2	25	50	37.5	40	33.3	$25<\rho=50$
3	50	75	62.5	60	66.7	$50<\rho=75$
4	75	100	87.5	80	100	$75<\rho=100$

Upcoming GPAT Development**

$>$ New analysis for probability of event occurrence among time series

- Find the number of times a shortage is declared in each run
- Calculate statistics and plot distribution of the numbers of shortages across the runs
* Funded by Lower Colorado Region of USBR

Upcoming GPAT Development**

Compound event definition

- Define an event with required condifions across a number of dififerent slots
- Lake Mead elevation < 1075 and Lake Powell elevation > 3526 and Lake Powell elevation < 3575
* Funded by Lower Colorado Region of USBR

Upcoming GPAT Development**

$>$ Graph format options for pre-selecting plot area color, line formats, and data marker formats
P Placeholder in results for an initial timestep value so a value can be easily entered and displayed on graphs

* Funded by Lower Colorado Region of USBR

Potential Future Development

$>$ Change the user interface from specifying a graph "type" to specifying transformations and analyses
$>$ Expand capabillities for sampling by time, transforming series, and analyzing events
$>$ Non-spreadsheet GPAT to bypass row/column limitations in Excel

